GearmanWorker的多进程实现
目录
Gearman多进程实现方案
前言
项目中选择了Gearman作为任务委派的中间件,但原生的Python扩展包仅支持单进程。在尝试将Gearman改造成自适应多进程的过程中,我走了一些误区,特此记录这些"坑"以及目前的最优解决方案。
实现思路
实现方式
- 主进程接收任务,子进程处理任务:主进程作为任务接收者,接收任务后分派给子进程处理,子进程直接返回结果给Gearman
- 多进程接收并处理任务:批量fork多个子进程注册任务,子进程间互不影响,各自完成接收、处理任务
第一种实现方式的优缺点
优点:
- 主进程只进行轮训任务接收,提高单条Gearman请求通道利用率(worker多数时间消耗在等待接收请求上)
- 子进程直接返回任务结果,主进程无需关心结果,专注接收任务
缺点:
- 需将Gearman socket传递给子进程,实现复杂(socket实例无法通过pickle传递,Unix的sendmsg虽可传递socket但构造GearmanWorker很麻烦)
- 父进程仍持有原socket句柄,导致任务请求方无法收到子进程返回的结果
第二种实现方式的优缺点
优点:
- 等价于fork多个原进程,逻辑和作业方式无改变
- 可在fork子进程前完成公有资源加载,避免重复加载
缺点:
- 子进程异常退出后主进程无法感知,重启的子进程未正确注册到Gearman
- 主进程异常退出后子进程无法感知,导致僵尸进程
解决方案
- 利用PID文件记录子进程PID:确保主进程退出后仍能通过PID文件终止子进程
- 利用Redis的发布订阅模式:实现GearmanWorker的正常退出
代码实现
# -*- coding: utf-8 -*-
import os
import signal
import threading
import multiprocessing
import redis
from gearman.worker import GearmanWorker, POLL_TIMEOUT_IN_SECONDS
WORKER_PROCESS_PID = '/tmp/multi_gearman_worker.pid'
class MultiGearmanWorker(GearmanWorker):
"""多进程Gearman worker"""
def __init__(self, host_list=None, redis_host=None, redis_port=None, pid=WORKER_PROCESS_PID):
super(MultiGearmanWorker, self).__init__(host_list=host_list)
self.redis_host = redis_host
self.redis_port = redis_port
self.pid = pid
def work(self, poll_timeout=POLL_TIMEOUT_IN_SECONDS, process=multiprocessing.cpu_count()):
"""开始作业,进程阻塞
:param poll_timeout: gearman连接超时时间,值越小worker召回越快但请求越频繁
:param process: 工作进程数,默认为CPU核心数
:return:
"""
print('Clear last process.')
self.gearman_worker_exit()
print('Ready to start %d process for work.' % process)
gm_poll = multiprocessing.Pool(process)
for x in range(0, process):
gm_poll.apply_async(gearman_work, (self, poll_timeout, self.pid))
gm_poll.close()
gm_poll.join()
# 正常退出则删除子进程PID文件
if os.path.isfile(self.pid):
os.remove(self.pid)
print('Multi gearman worker exit.')
def gearman_worker_exit(self):
"""结束子进程"""
if not os.path.isfile(self.pid):
return True
with open(self.pid, 'r+') as f:
for pid in f.readlines():
pid = int(pid)
try:
os.kill(pid, signal.SIGKILL)
print('Kill process %d.' % pid)
except OSError:
print('Process %d not exists' % pid)
continue
os.remove(self.pid)
print('Remove process pid file.')
return True
# 子进程使用的Gearman工作开关标识
GEARMAN_CONTINUE_WORK = True
def gearman_work(gm_worker, poll_timeout=POLL_TIMEOUT_IN_SECONDS, pid=WORKER_PROCESS_PID):
"""以多进程方式开启Gearman worker"""
try:
# 记录子进程PID以便主进程重启后清除未退出的子进程
with open(pid, 'a+') as f:
f.write("%d%s" % (os.getpid(), os.linesep))
print('Child process start for work.')
continue_working = True
worker_connections = []
d = threading.Thread(name='monitor', target=gearman_monitor,
args=(gm_worker.redis_host, gm_worker.redis_port))
d.start()
def continue_while_connections_alive(any_activity):
return gm_worker.after_poll(any_activity)
# 轮询连接,等待任务
while continue_working and GEARMAN_CONTINUE_WORK:
worker_connections = gm_worker.establish_worker_connections()
continue_working = gm_worker.poll_connections_until_stopped(
worker_connections, continue_while_connections_alive, timeout=poll_timeout)
# 关闭所有连接
for current_connection in worker_connections:
current_connection.close()
print('Gearman worker closed')
return None
except Exception as e:
print(e)
def gearman_monitor(redis_host, redis_port):
"""监听Redis的发布订阅信号"""
global GEARMAN_CONTINUE_WORK
print('Start gearman monitor.')
while GEARMAN_CONTINUE_WORK:
try:
sub = redis.StrictRedis(redis_host, redis_port).pubsub()
sub.subscribe('hot')
for i in sub.listen():
if isinstance(i.get('data'), str):
if i.get('data') == 'exit':
print('Gearman monitor receive restart signal.')
GEARMAN_CONTINUE_WORK = False
sub.unsubscribe('hot')
break
except Exception as e:
print(e)
try:
sub.unsubscribe('hot')
except Exception:
pass
print('Gearman monitor closed')
if __name__ == '__main__':
def test_multi_gearman_worker(worker, job):
print(worker)
print(job)
# 初始化多进程Gearman worker
gearman_worker = MultiGearmanWorker(
host_list=('127.0.0.1:4730',),
redis_host='127.0.0.1',
redis_port=6379
)
# 注册任务
gearman_worker.register_task('test_multi_gearman_worker', test_multi_gearman_worker)
# 启动工作
gearman_worker.work()
附录
关键点说明:
- 通过PID文件实现子进程的生命周期管理
- 利用Redis Pub/Sub实现优雅的进程退出机制
- 通过多进程池实现高效的任务处理
- 代码设计确保了主进程异常退出时子进程能被正确清理